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This paper considers the mixing of a turbulent radial wall jet with a secondary 
fluid introduced into the impingement area of the wall jet so as to form a steady 
axisymmetric state. Similarity of the concentration profiles perpendicular to the 
wall has been assumed and, by solving the momentum and mass flow equations, 
the concentration distribution through the layer and a similarity exponent 
giving the variation of concentration along the wall have been determined. 

1. Introduction 
The term ‘wall jet’ is used to describe the flow produced over a plate immersed 

in a fluid when a jet of the fluid impinges on the plate (usually at right angles). 
The region of interest is the fully developed flow that occurs after the stagnation 
and transition regions; if the impinging jet is at  right angles, the wall jet spreads 
out radially and the fully developed flow lies at about four free-jet radii from the 
axis (Bradshaw & Love 1961). 

The earliest work on the wall jet seems to have been done as part of an 
investigation of two-dimensional turbulent jet expansion by Forthmann (1934)’ 
under the heading of a ‘partially open jet ’. By making a non-dimensional plotting 
of velocity distribution across the wall jet against distance from the wall, y, he 
found the profiles to coincide in one curve thereby showing that the flow followed 
a simple law of similitude. He also observed that the boundary-layer thickness 
varied linearly with distance along the wall, x, the maximum velocity varied as 
x-4 and the velocity in the region near to the wall varied as y+. 

The name ‘wall jet ’ was first ascribed to this type of flow by Glauert (1956) in 
a theoretical investigation of laminar and turbulent flows for both two dimen- 
sional and radial wall jets. In  the case of the turbulent wall jet, the eddy-viscosity 
varies over the flow and Glauert considered a hybrid structure in which the eddy- 
viscosity distribution near the wall is consistent with a modification of the power- 
law velocity profile due to Blasius (1913) for flow in a pipe (Schlichting 1955, 
p. 404), this being in keeping with Forthmann’s findings, and the eddy-viscosity 
in the outer layer is found from Prandtl’s hypothesis for free turbulent flow. 
Complete similarity is not now possible, since the eddy-viscosities in the inner 
and outer parts of the flow vary in slightly differing manners with the Reynold’s 
number; however, Bakke (1957) found the variation to be so slow as to be un- 
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detectable by experiment. Since Bakke’s experimental investigation, several 
authors (Bradshaw & Love 1961; Seban & Back 1961; Sigalla 1958; Bradshaw 
& Gee 1962) have verified experimentally the validity of the velocity distribution 
found by Glauert. 

For an incompressible, turbulent radial wall jet Poreh & Tsuei (1965) deduce, 
by considering complete self-similarity of the velocity profiles, that the boundary- 
layer thickness varies as x and the maximum velocity as x-l. However, they show 
that by neglecting viscous shear it is possible to have only approximate self- 
similarity with the maximum velocity varying as xd. Experimental work by 
Tsuei (1962) confirms this approximation and evaluates d as - 1.1. Self-similarity 
of temperature profiles then implies that the maximum temperature Tm in a 
slightly heated jet impinging on an insulated wall varies as ~ - ( d + ~ ) .  Taking Tsuei’s 
value of d gives Tm cc X - O . ~ .  

Laminar mixing between a radial wall jet of incompressible gas and a second 
gas was considered by Chaudhury (1964). 

The present paper considers the mixing between a turbulent radial wall jet, 
produced by a jet of fluid impinging normally on a plate, and a secondary fluid 
emitted from the plate so as to produce an axisymmetric flow (see figure 1). Tem- 
peratures have been assumed constant and buoyancy effects have been neglected. 

I I + 
Secondary source 

FIGURE 1. Flow diagram: I, transition zone from pipe flow to free-jet flow; 
11, free-jet zone; 111, stagnation and transition zone; IV, wall-jet region. 

A similarity solution of the concentration profile, in which the form of the 
concentration distribution through the jet does not vary with distance from the 
axis of symmetry has been assumed, and the same eddy-viscosity variation and 
velocity profile as formulated by Glauert have been used. Since this means that 
the inner part of the wall jet is governed by Blasius’s formula and the outer 
part by Prandtl’s hypothesis, the junction of the two regions being at the velocity 
maximum, some slight discontinuity in the concentration gradient at  this point 
is to be found. 
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2. Theory 
2.1. Governing equations and boundary conditions 

Consider the flow produced by a turbulent radial wall jet over a plane wall, a t  
constant pressure, temperature and density. The momentum equation expressed 
in boundary-layer form is 

where x and y are distances measured along and perpendicular to the wall, x 
being measured from the axis of symmetry. E is the eddy-viscosity and u and v 
are the components of the mean velocity along x and y respectively. The contin- 
uity equation is 

a a 
-(xu) + - (xv)  = 0, 
ax a2/ 

which can be satisfied by introducing a Stokes stream function @ defined by 

allr allr 
aY ax 

xu=- ,  xu=--. (3) 

A second fluid of the same density as the impinging fluid is introduced at  the 
wall at the point x = 0. We now assume that the rate of diffusion in the x direction 
is small compared with that in the y direction, analogous with the boundary- 
layer form of the momentum equation, and hence the diffusion equation becomes 

a ( 3 a a 
-(tux)+- (cvx) = x- 6’- , ax aY a2/ 

(4) 

where E’ is the diffusion coeficient and cis the mass concentration of the secondary 
fluid. Substituting (2) into (4) we get 

The relationship between the eddy viscosity and the diffusion coefficient is 
defined by N, = E/E’  where N, is the Schmidt number. 

If we consider the mass of secondary fluid introduced into and leaving a cylinder 
of radius x about the jet axis per unit time, we have in the steady state 

2 TJ; xucdy = constant = &coo, (6) 

where Q is the volume of secondary fluid introduced per unit time and coo is its 
concentration. 

The boundary conditions are 

u+O, c+O as y + m ;  u = v = 0, ac/ay = 0 at  y = 0, ( 7 )  

since we are considering a single source in an otherwise impervious wall. 
1-2 
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2.2. Ximilarity solutions 

Non-dimensional variables are now introduced by writing 

vx V Y  
- 

u = UE,  2, = uv, x = - u '  y = y >  

and c = cooC, 
@ = -  V % p  

U 

where U is a constant velocity and v is the kinematic viscosity. 
Glauert (1956) shows that if a similarity solution of the momentum and con- 

tinuity equation exists, with the maximum velocity Urn= xa and the jet width 
6cc xb, then for a turbulent radial wall jet a and b are related to a parameter a by 

- 9a 4 + 5 a  a = -  b = -  
5 + 4a'  5 + 4a' (9) 

Glauert also shows that 

v, (11) and E = A h 2 3 - 3 b f f 6  

where h and A are constants. 
In solving ( 5 )  we look for a similarity solution for the concentration in the form 

C = ZmG(q), (12 )  

where G(7)  and m are to be determined. 
With these similarities it can be seen from (6) that 

m =  - ( a + b + l ) ,  

i.e. 
9 

5 + 4 a  
m =  - 

From ( 3 )  and (10) we now have 

U X 4 - T '  
5 - 4 b  

h 
'u=- 

and 

From (8) and ( 12) we have 

w = - U(5  - 4b) (Z3-4y(7) - E3-5bi j f  '(71)). 

and 

(1 1) and (1 7)  now give 

(13) 
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and (5) becomes 

In the outer part of the flow the same forms of the variables are retained except 
for E (  l l ) ,  which is now considered to be constant through the layer, 

6 = hX3-3bv. (20) 

G" m 
Gf' - GY# -....- Equation (5) now gives - 

Ns 5-4b 

3. Integration 
It is noted, from (9) and (13), that 

rn 
__ = - 1  
5-4b 

and hence that (19) and (21) reduce to 

and (24) 

where the suffixes refer to the inner and outer parts of the flow respectively. 

inner and outer regions respectively, 
From a similar treatment of the momentum equation (1) we obtain for the 

and f{+ fOf:+afp= 0 (26) 

with boundary conditions 
f ;7--+ -+ constant as 7 --f 0 and fh( 00) = 0. 

The junction of the inner and outer layer velocity profiles is taken to be 
the velocity maximum, where 7 = vrn; hence the concentration profiles are 
joined at  the same point, where 

(27) I fs(7rn) = f ; ( ~ r n )  = 0,  
fA(r,) =&(7mL 
fo ( 7 m )  = f d s m ) ,  
Gd~rn)  = Gl(Vrn)* 

Puttingf, (7) = A*fl(7) into (23) and (24) we get 
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Glauert shows, by considering the relative importance of the second and 
third terms, that (29) can be replaced by 

(30) 
d 
- (f3f3”) +fJ; + 2fA2 = 0, 
d r  

where 

and 

(30) can now be integrated to give 

g’7 = l -g$,  (32) 

where g(5) =fi(r) and $ = i(v)+r. (33) 

Putting (31) into (28) and integrating with respect to 7 gives 

fx + f 3 ~ 1  = constant = 0 
B5 N, 

from the boundary conditionsfA(0) = 0 andf3(0) = 0. 

From (33) we have fA6 = ( y ) $ g ’ 6  g; 

and 

Substituting (35) and (36) into (34) we have, using (32), 

i.e. 

Consider now the outer part of the layer. Integrating (24) with respect to r 
Gh - + Go fo = constant = O 
NS 

gives 

from the boundary conditions GA (co) = 0 and Go( co) = 0. (38) can be rearranged 

dQ0 
__ = - N, fo d r .  
Gfi 

in the form 
(39) 

Integrating (39) gives 

G0(r) = Go(rm) exp [ -.\:s;7,ifo(.r) 4. (40) 

In  order to findfo(r), a solution of (26) must be sought. Glauert does this by 
assuming a series solution valid for large values of 7 and extending it to  smaller 
values of 7 by numerical integration. Hence the integral of (40) can be evaluated. 
The concentration profiles are now joined a t  q = qm (me$ can be taken with suffi- 
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cient accuracy from figure 3 of Glauert's paper for any value of a, a being found 
from the velocity profiles). Then from (37) we can find G, (7) at this point. 

Gl(7m) = GI(0) (1 - [Bfz(rm)l~)B"*'7- 
Then as Gl(7m) = Go(7m) 
we have from (40) 

and hence the concentration profile across the whole of the jet can be found from 
(37) and (41) in terms of the concentration at  the wall. 

From the constancy of mass flow we can write, by dividing the region into its 
inner and outer flows, 

Q coo W 

xu,c,dy+J xu,cody = x. J: Urn 

The first integral gives 

and the second one 

by Z we have 
Qc U4b-4X4b-5 

c(x,O) = oo . ~ 4 b - 5 .  
2 n Z ~ * ~ - ~  (43) 

The value of A can be found by considering the continuity of the velocity and 

From (37), (41) and (43) the concentration at any point in the wall-jet region 
the Stokes's stream function at  the velocity maximum. 

can be found. 

4. Results 

Figure 2 shows a plot of c/co against 7 made from equations (37) and (41) for 
various values of NS and with a = 1.3 where co is the concentration at the wall. 
The velocity profile u/u,,,, where u,,, is the velocity maximum, against 7 is also 
shown for a = 1.3. Although the gradient of the profile at  the wall is zero, the 
wall having been assumed impervious, the curvature in this region is so great as 
to make this indiscernable. It is interesting to note that this feature was found 
both analytically and experimentally by Seban & Back (1961) in their investiga- 
tion of temperature profles in a two-dimensional tangential wall jet on an adia- 
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batic wall. For a = 1.3 we can see from (43) that c (x ,  0) varies as (x-O.**) which 
agrees closely with the corresponding variation of maximum temperature with 
distance in a heated jet (2-07 as found by Poreh & Tsuei (1965). However, as 
the theoretical variation of layer thickness with x has been found to differ slightly 
from experimental results, e.g. Bakke (1957), it is possible that some variation 
will also be evident here too. 

7 
FIGURE 2. Concentration profiles at  different Schmidt numbers and the 

velocity profile for cc = 1.3. 
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